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ABSTRACT
A growing body of information retrieval research has studied the
potential of search engines as effective, scalable platforms for self-
directed learning. Towards this goal, we explore document represen-
tations for retrieval that include features associated with effective
learning outcomes. While prior studies have investigated differ-
ent retrieval models designed for teaching, this study is the first
to investigate how document-level features are associated with
actual learning outcomes when users get results from a personal-
ized learning-oriented retrieval algorithm. We also conduct what
is, to our knowledge, the first crowdsourced longitudinal study of
long-term learning retention, in which we gave a subset of users
who participated in an initial learning and assessment study a de-
layed post-test approximately nine months later. With this data, we
were able to analyze how the three retrieval conditions in the origi-
nal study were associated with changes in long-term vocabulary
knowledge. We found that while users who read the documents in
the personalized retrieval condition had immediate learning gains
comparable to the other two conditions, they had better long-term
retention of more difficult vocabulary.
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1 INTRODUCTION
Recent work in information retrieval has focused on models, al-
gorithms, and evaluation methods at the intersection of general
Web search with learning-oriented intents [6, 18] to investigate
different dimensions of the concept of search as learning. For exam-
ple, some studies have investigated and demonstrated the evident
demand for using Web search engines for accomplishing learning
or discovery goals [2, 7, 13]. Other studies have investigated the use
of Web search engines to accomplish learning goals and possible
links between search behavior and learning outcomes [1, 6, 9, 23].
Additional research also investigated effects of search behavior on
learning outcomes but through more indirect measures of learning,
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such as classifying users as beginners or experts and observing
their behaviors [10, 22].

Learning outcomes have also served as the specific basis for a
retrieval objective or framework within educational applications.
Prior work by Collins-Thompson and Callan on the REAP sys-
tem [5] demonstrated how a system could automatically crawl,
filter, curate, and retrieve a set of Web documents to accommodate
learning a predefined set of words from context within an intel-
ligent tutoring system. However, this framework did not extend
to supporting a real-time search engine for finding personalized
learning-oriented documents for arbitrary topics or ad-hoc queries.
One of the first studies to introduce a retrieval model whose ob-
jective specifically aimed at optimizing learning outcomes was the
study by Syed and Collins-Thompson [19], later extended in [20].
In that study, the authors ran a large-scale crowdsourced user study
to investigate actual changes in knowledge states of participants
before and after they were provided personalized documents to read
[20]. They demonstrated that their personalized retrieval approach
could achieve better learning gains per unit of effort compared to a
commercial search engine baseline.

That work, however, did not explore which specific features in
documents or document sets being retrieved were likely to help or
hinder learning, and we know of little work in general on that
question. Such features might include the number and density
of accompanying images, the difficulty of the text, the length of
paragraphs, and so on. In this work, we study an extensive set of
features based on a dataset from the original study by Syed and
Collins-Thompson to determine what features best predict different
learning outcomes, as well as a few other important learning-related
variables such as time spent reading. We also assess the long-term
retention of those who took part in the original study by Syed and
Collins-Thompson [20] by conducting a delayed post-test with a
subset of those users.

The main contributions of this work are as follows: (1) We in-
vestigate a comprehensive set of document, document-set and user
interaction features for their association with a variety of short-
term and long-term learning measures on a vocabulary learning
task; (2) using predictive models based on these features and out-
comes, we show that evenmodels without user-specific information
are somewhat effective at predicting which documents are likely to
be associated with improved learning, with user-specific features
further improving model fit; (3) We conduct the first study of long-
term retention in the context of Web search for learning; and (4)
We investigate temporal changes in knowledge state from three
stages of learning (pre-test, immediate post-test, delayed post-test)
and connect these outcomes to properties of the original study
conditions. Finally, we discuss the implications of our findings for
further improving search-as-learning frameworks.
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2 RELATEDWORK
A number of prior studies have investigated different aspects of
how Web search can be, and is, used for learning [2, 7, 10, 14,
22, 24]. Several large-scale query log studies have investigated
how search interaction features, including queries issued, pages
visited, time spent and more, varied between experts and non-
experts [10, 22] and between expert and non-expert website content
[14]. Work by Kim et al. [14] also found evidence of users exhibiting
“stretch reading” behavior where they choose to read documents
significantly higher than their own expected understanding level.
A recent study by Verma et al. [21] also found that readability of
a document showed a negative correlation with how easily users
could find relevant content on the page. This suggests that certain
features of Web page content could have an effect on which pages a
user chooses to visit when learning, and their ability to find relevant
information on that page.

Short-term learning.While such studies are useful in under-
standing estimated changes in a user’s domain expertise, they did
not directly assess actual learning outcomes of participants engag-
ing in a learning task. There have been quite a few studies that have
investigated this [1, 6, 9, 12, 20, 24]. Several studies have examined
how users in largely unconstrained search environments exhibit
different search behaviors, which in turn may link to changes in as-
sessed learning outcomes [9, 12, 24]. Other studies assessed changes
in knowledge state as a function of search behavior and documents
that were selected or preferred by the user, e.g. via exploring in-
trinsically diverse results [6], scanning multiple documents first,
ordering and then reading them [1], or simply providing a custom
set of documents without taking query input at all from the user
[20]. Furthermore, very few studies that have explicitly assessed
Web search and its intersection with learning outcomes have tried
to directly optimize the utility of search results for learning [5, 20].
One of the primary goals of this study is to explore how document
properties, used as features in robust regression models, are as-
sociated with actual learning outcomes, and predictive of future
learning outcomes as part of optimal content retrieval by search-
for-learning systems.

Long-term learning. Despite the importance of long-term re-
tention as a learning goal, few, if any, studies to our knowledge
have considered search engines aimed at long-term retention of
knowledge, or long-term gains in knowledge. In practice, learn-
ing is a continuous process, constantly engaged as a function of
information that we observe and cognitively process [4]. While the
distinction between short and long-term learning has been estab-
lished for quite some time [3], its application to a search retrieval
framework would be a novel and critical contribution. Recent work
by Eickhoff et al. [10] investigated how users’ domain expertise
changes over time in a large-scale query log analysis, but did not
measure actual knowledge of the users at any stage. Earlier work
by Wildemuth [23] assessed how Web search tactics and behaviors
changed during a nine-month span in the context of an educational
course. The author investigated different search patterns and dif-
ferences in actual learning outcomes at three separate temporal
stages. While this offered useful insight into how search behavior
may change with changes in knowledge, it did not give insight as to
what properties of the documents were influencing these changes,
nor did it investigate different retrieval algorithms and their possi-
ble effect on the learning changes. In this study, we conduct the first

crowdsourced longitudinal study to assess a participant’s long-term
retention of knowledge, based onmeasured learning outcomes from
an earlier user study of vocabulary learning. We investigate what
document and user variables may be associated with long-term
changes in knowledge state and how different document retrieval
algorithms may influence the strength of these changes.

3 DATASETS
To conduct our analysis, we used a dataset provided from earlier
work by Syed and Collins-Thompson [20], who conducted a large-
scale crowdsourced user study to evaluate the effectiveness of their
retrieval models for personalized learning. They tested their ap-
proach on 10 topics, with 40 participants in each condition, yielding
a total of 863 judgments after enforcing quality control filters. Par-
ticipants first completed a pre-test consisting of 10 multiple-choice
questions on definitions of related vocabulary keywords. They were
then provided a personalized set of documents that they had to
read and were finally given a post-test, identical to the pre-test.

In this study, we only consider participants who were shown
different personalized sets of documents, as this allows us to com-
pare changes in document features to changes in knowledge state.
This reduced dataset contains 283 records, with each record con-
taining data about a unique participant, including their prior and
post knowledge scores for each of the 10 keywords, the time they
spent in the reading section, and the set of documents they were
provided (and read).

In addition to analysis on this dataset, we investigated the effect
of a variety of features on robust, or long-term, learning outcomes
by conducting a follow-up crowdsourced test. As we could not
control which participants would return, especially since it had been
nearly nine months since the original study, we did not get long-
term data for all 863 participant records, though wewere still able to
gather a reasonable number of records. In the following section, we
will first investigate the features that best predict different measures
of learning outcomes along with time spent reading. We will then
give an analysis of data for long-term learning outcomes and their
relationship to document and user features.

4 ANALYSIS
Overall, we considered a set of document features that included
features pertaining to image use, vocabulary difficulty, word count
and content structure (described in Section 4.1). A complete list,
including user-dependent features, can be found in Table 1. In this
section we analyze the relationships between these features and
a variety of measures of learning (Section 4.2). We fit and analyze
models restricted to user-independent features (Section 4.3) and
then with all features (Section 4.4).

4.1 Choice of Features
We chose document and user features based on various concepts
investigated in earlier studies [8, 11, 16, 20, 21, 25]. Broadly, the
features we chose can be grouped as follows:

1. Image content. Some studies have found that providing
plain-text filtered documents (with images removed) im-
proves learning outcomes [11] over the original document,
possibly suggesting a negative effect of image use inWeb doc-
uments on learning. However, other studies found positive



Type Group Feature Description
D Effort WordCount Total number of unigrams in the document.
D Effort KeyCount Total number of keywords in the document.
D Effort DocumentCount Total number of documents in the set. This feature ranges from 1 to 10.
D Effort WordsPerDocument Ratio ofWordCount to DocumentCount .
D Effort DocumentAдeDi f f iculty 85th percentile Age-of-Acquisition score for the document. Uses the expanded set of

scores from the study by Kuperman et al. [15].
D Effort WeiдhtedWordCount Each unigram is assigned its corresponding “age” from the Age-of-Acquisition dataset.

These scores, for each occurrence of each unigram in the document, are summed.
D Effort AveraдeParaLenдth Average length of each paragraph in the document. Computed as count of all unigrams

in all HTML <p> tags divided by total instances of <p> tags.
D Images ImaдeCountTaд Total instances of the HTML <img> tag that appeared in the document.
D Images ImaдeCountManual Total instances of non-advertising and non-navigational images that appeared in the

document. Counted manually.
D Images ImaдeToText Ratio of ImaдeCountTaд toWordCount .
D Links OutboundLinks The count of all outbound links.
D Keywords KeywordDensity Computed as the count of occurrences of any of the N keywords k1, . . . ,kN divided

by the count of all words (i.e.WordCount ).
D Keywords WeiдhtedDensity Same as KeywordDensity except the denominator is theWeiдhtedWordCount feature.
U+D Keywords IncorrectKeysRatio Total occurrences of keywords that the participant got wrong in their pre-test, divided

by the total occurrences of any keyword in that document.
U+D Keywords IncorrectSemanticRatio First compute SRel scores: the relevance of each keyword instance in a document

computed as the average Word2Vec similarity [17] of its five surrounding words (both
ahead and behind). IncorrectSemanticRatio is the sum of all SRel scores for keywords
the participant got wrong on the pre-test, divided by the total sum of SRel scores.

DS Keywords LoдWeiдhtedDensity Same asWeiдhtedDensity except that instead of simply summing the values over the
set of documents, each successive document’s value ofWeiдhtedDensity was reduced
by a DCG discount factor of log2(p + 1) where p is the rank in the set of documents.

DS Images Set_ImaдeToText Set-level calculation of ImaдeToText .
DS Effort Set_AvдParaLenдth Set-level calculation of AveraдeParaLenдth.
DS Keywords Set_KeyDensity Set-level calculation of KeywordDensity.
DS Keywords Set_WeiдhtDensity Set-level calculation ofWeiдhtDensity.
U+DS Keywords Set_IncorrectRatio Set-level calculation of IncorrectKeysRatio.
U+DS Keywords Set_IncorrectSemsRatio Set-level calculation of IncorrectSemanticRatio.
U+DS Keywords ExpectedKnowledдe Expected knowledge computed as a personalized sigmoid function of keywords [20].
U PriorKnowledдe Sum of initial correct answers to the vocabulary terms needed to be learned.

Table 1: Set of features that were considered. “U” are User features that involve prior data about the User’s knowledge. “D” are
Document features that require only individual document data. “DS” are Document Set features based on treating the set of
documents as a single bag-of-words. The “D” features values were aggregated by summation, since learning outcomes were
measured against sets of documents.

association of image use and learning, when used appro-
priately [16] and a positive association with the fraction of
images in documents and the ability of users to find relevant
content [21].

2. Keyword content. Prior work has found that optimizing
document selection by difficulty-weighted keyword density
improved multiple measures of learning outcomes [20] in a
vocabulary learning task where the system determined the
set of keywords that a participant had to learn. We also inves-
tigate other keyword features like the count of occurrences
of keywords unknown to the user relative to all keywords.

3. Effort. Prior work has suggested that too much effort on
the part of users can be overwhelming and, according to

Cognitive Load Theory, could hurt learning outcomes [8].
On the other hand, having “desirable difficulties” [3] has
been found to improve learning outcomes.We consider effort
as functions of document count, word count and reading-
difficulty-weighted measures of content.

4. Embedded links. Several studies have found that embedded
links in documents can disturb the linearity of the learning
process [25] and can add extra cognitive load [8], potentially
hurting learning gains.

4.2 Measures of Learning Outcomes
We now evaluate the following measures of learning outcomes, on
the provided sets of K = 10 vocabulary questions, with Prek as



prior knowledge of keyword k , Postk as corresponding post knowl-
edge and rk as vocabulary difficulty level of k :

Learning Gains (LG). As a simple measure of learning growth
we compute the total instances where a participant did not know
a keyword to be learned in the pre-reading test and did know the
definition in the post-reading test.

LG =
K∑
k=1

{
1 Prek = 0 and Postk=1
0 otherwise

}
Difficulty-Weighted Gains (DWG). This meausure is essentially
the same as Learning Gains but we weight the learning gains of
each keyword by the vocabulary difficulty level associated with
it. These difficulty scores are retrieved from the expanded dataset
from work by Kuperman et al. [15]. By weighting the learning
gains by vocabulary difficulty, we can capture the intuition that
learning more difficult words like ‘luciferase’ and ‘eclogite’ may
require different features than those required for learning easier
words like ‘minerals’ or ‘soils’.

DWG =
K∑
k=1

rk

{
1 Prek = 0 and Postk=1
0 otherwise

}
Realized Potential Gains (PG). This is a measure of the partic-
ipant’s actual Learning Gain relative to their maximum possible
Learning Gain. Specifically, for a set of 10 vocabulary terms being
tested, we have:

PG =
LG

10 −∑10
k=1 Prek

Participants who had perfect prior knowledge (10/10) were omit-
ted from analysis as they could not have theoretically shown any
improvement.
FinalKnowledge (FK).This is amuch simplermeasure of learning
outcome where we take the linear sum of the participant’s final test
scores, regardless of their prior performance. Specifically, we have:

FK =
K∑
k=1

Postk

Learning Hindrance (LH). While previous measures of learning
outcomes assessed positive learning outcomes, it is also important
to understand features that may hinder learning.We consider Learn-
ing Hindrance to be the total keywords that a participant got wrong
in the pre-test and got wrong again on the post-test, indicating that
they were unable to learn the definition. Specifically, we have:

LH =
K∑
k=1

{
1 Prek = 0 and Postk=0
0 otherwise

}
Total Reading Time (TR).While this is not technically a measure
of learning, it is an important measure to analyze as it can help
determine what document and user features influence how much
or how little time people are willing to spend when engaged in a
learning task. This is measured as the total time (ms) a user spent
reading the set of documents they were provided.

4.3 Prediction without User Data
There are many scenarios in Web search where it may be difficult
or impossible to obtain an accurate assessment of a user’s prior
knowledge, especially for any arbitrary topic. Thus, here we inves-
tigate document features that are completely independent of the
user (“D” and “DS” type properties only) and assess how well robust
regressionmodels trained on these features can predict learning out-
comes. These models could facilitate learning-oriented retrieval for
situations where a Web search framework has access to document
data but not to a user’s prior knowledge.

In selecting the features for each model, we applied a stepwise
algorithm using AIC (Akaike information criterion) to reduce the
likelihood of overfitting to unnecessary features. We used min-
max scaling to normalize the predictor and dependent variables in
all models. To reduce the effect of any specific influential points
on model fitting, we fit all the models with robust regression. We
tabulate the trained models and averaged 10-fold cross-validated
correlations in Table 2.

The results from Table 2 show that even without any features
about the user, we can still get reasonably strong correlations be-
tween predicted learning outcomes and actual outcomes. For learn-
ing gains, the Difficulty-Weighted Gains tend to show substantially
better improvement over the unweighted gains. On the other hand,
the Final Knowledge state variable shows a much stronger corre-
lation as does the Learning Hindrance variable. We visualize the
trained models for Difficulty-Weighted Gains, Final Knowledge and
Learning Hindrance in Figure 1.

For the selected features, all positivemeasures of learning showed
positive weights for ImageCountManual and negative weights for
ImageCountTag, suggesting that, in general, Web pages having
more relevant images tend to be associated with better actual learn-
ing outcomes with the opposite being true for irrelevant images
(such as ads and navigational icons), possibly due to their distract-
ing to the user. This is consistent with existing work in this area
that has suggested that having images in learning material has been
found to both help and harm learning outcomes, depending on the
study[8]. All measures of learning gains showed a negative rela-
tionship with the total number of links in the document, which is
consistent with what we would have expected from theory (Section
4.1). However, it is not entirely clear why Final Knowledge shows
a positive relationship with total links. We also observe that both
unweighted and weighted learning gains measures were positively
affected by weighted keyword density, at the individual document
level. This is consistent with the results from [20] that found that
document sets produced by greedy document-level optimization for
weighted keyword density outperformed commercial baseline re-
sults in terms of learning gains. However, we also found that at the
set level, the weights for weighted density were negative. This dis-
parity may be due to the document-level features being computed
as sums across all documents in the set, thus making the Docu-
mentCount feature an implicit feature in document-level weighted
density. This suggests that at the set level, keyword density should
be rewarded but weighted keyword density should be penalized.
The positive learning outcomes from the earlier study [20] could
be attributed to the fact that set-level weighted density was also
strongly negatively correlated to features like ImageCountTag and
OutboundLinks, so that optimizing towards weighted density could
have indirectly brought out higher quality documents.
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Figure 1: Predicted and actual learning measures trained on non-user features.

Feature LG DWG PG FK LH TR
WordCount 0.4379 3.6121 -0.5535 -2.8926
WeightedWordCount -3.5873 2.3241
AverageParaLength -0.2336 -0.2755 0.3486
ImageCountManual 0.2904 0.3224 0.5441 0.2996 -0.2738 0.1544
OutboundLinks -0.2394 -0.3990 0.2681 -0.1498 0.3157
KeywordDensity -2.4830 -1.9237 -1.9809
WeightedDensity 1.7599 1.8847 2.1748
DocumentAgeDifficulty 0.3747 -0.2834 -0.2651 0.3308
ImageToText
ImageCountTag -0.3068 -0.2283 -0.6259 -0.2909 0.2688 0.1498
KeyCount -0.4071
LogWeightedDensity 0.5371
DocumentCount 0.4221 0.0864
WordsPerDoc 0.4481
Set_AvgParaLength 0.1492 0.1832 0.2393 0.1142 -0.1181 0.2591
Set_ImageToText -0.2189 0.1909 -0.2600
Set_KeyDensity 1.5808 2.0079 1.6829 -0.3255 0.2626
Set_WeightDensity -1.5624 -1.8801 -2.1677
Performance LG DWG PG FK LH TR
Correlation (model
prediction vs actual) 0.3296 0.3611 0.3436 0.5810 0.6117 0.2376

Table 2: Trained normalized features for different dependent variables. Values for corresponding features are learned coef-
ficients in the robust regression model. LG = Learning Gains; DWG = Difficulty-Weighted Gains; PG = Potential Gains; FK =
Final Knowledge; LH = Learning Hindrance; TR = Total Reading Time (ms).

We find a similar tradeoff when it comes to average paragraph
length, with the set-level average (micro-averaged across docu-
ments) being positively correlated with all measures of learning,
suggesting less segmentation of the text can be an indication of
higher-quality content for learning. However, we also note that
the document-level average showed the opposite trend for Poten-
tial Gains and Final Knowledge, possibly suggesting that average
paragraph lengths should be longer but there should be fewer doc-
uments overall.

Finally, we note that the models are not simply capturing the
intuition that having more documents results in stronger gains.
The “DS” set-level features are mostly ratio features which are
invariant to proportional increases in the amount of content but

are dependent on the relative changes of different types of content.
Adding or removing documents to a set would give no guarantee
of increasing or decreasing these values (e.g. Set_AvgParaLength
had nearly 0 correlation with DocumentCount). If we excluded
all the “DS” features, the new correlated strength decreased by
about 16.3% averaged across the six models and if we consider only
DocumentCount as a feature, the drop is substantially higher at
38.9%, suggesting that the models explain more than just exposure
to more content is associated with higher learning outcomes.

4.4 Predicting with User Data
We have seen that in the absence of user-dependent features, we
were able to train robust regression models on multiple measures



Feature LG DWG PG FK LH TR
WordCount -2.5116
WeightedWordCount 1.8478
AverageParaLength -0.1523 0.1066
ImageCountManual 0.3077 0.3867 0.5178 0.2353 -0.2154
OutboundLinks
IncorrectSemanticRatio 0.7476 0.6536
KeywordDensity -0.4643 -0.5915 -2.2101 -0.5441 0.3250 -0.2334
WeightedDensity 2.2856
DocumentAgeDifficulty -0.4410
ImageToText
IncorrectKeyRatio 0.3443 0.3578 0.3933 -0.2410 -0.5565
ImageCountTag -0.1759 -0.2824 -0.5097 -0.1426 0.1231 0.2191
KeyCount 0.3497
LogWeightedDensity 0.3261 0.4702 0.3570 -0.2283
DocumentCount 0.2834
WordsPerDoc
ExpectedKnowledge -0.1199 -0.1757 0.0839 -0.2341
Set_AvgParaLength 0.1466 0.1098 -0.1026 0.2404
Set_ImageToText -0.2745 -0.1738 -0.3182 -0.2347 0.1921 -0.1901
Set_KeyDensity 1.4125 1.3909
Set_WeightDensity -1.4657 -1.7781
Set_IncorrectRatio -0.6198 -0.2546 -0.4914 -0.6803 0.4338
Set_IncorrectSemsRatio 0.4063 0.4612 -0.2844
PriorKnowledge -0.3694 -0.3889 0.3289 0.7584 -0.6414 0.3565
Performance LG DWG PG FK LH TR
Correlation (model
prediction vs actual) 0.4571 0.5091 0.3908 0.7156 0.7499 0.2650

Robust correlation
with PriorKnowledge 0.3744 0.3397 0.2731 0.6657 0.7361 -0.0563

Table 3: Trained normalized features for different dependent variables (considering all possible features). Values for corre-
sponding features are learned coefficients in the robust regression model.

of learning, resulting in observed trends that were commensurate
with findings from existing literature. Now we attempt to further
augment the power of these results by including all the features
from Table 1 in our model. Repeating the same feature selection
and model fitting process as before, we have the results in Table 3.

We first note that including all features improved the cross-
validated correlations for all measures of learning, and for some
quite substantially. This is not unexpected, given that we are adding
signals which have a naturally strong correlation to most measures
of learning already. For example, regardless of other properties,
the user’s prior knowledge could be expected to have a strong
negative correlation with Learning Gains since users with higher
prior knowledge naturally have less opportunities for improve-
ment. Indeed, we trained the set of six learning measures against
a robust model containing only PriorKnowledge as a predictor
and found substantially strong correlations from that alone (last
row of Table 3). However, training against the full set of features
did show significant improvement in predicting Learning Gains,
Difficulty-Weighted Gains, Potential Gains and especially Total
Reading, which had almost no correlation with PriorKnowledge.

As such, there are definitely advantages to incorporating both user
features and document features for better results.

Using all features, we see similar trends to those we saw before:
(1) all measures of learning outcomes had positive coefficients for
the count of relevant images, and those measures that had count of
all images as a significant feature had negative weights; (2) weighted
keyword density again shows conflicting association with learning
outcomes at the set level vs. the sum of document level; (3) we see
a similar effect that we discussed earlier with average paragraph
lengths as well as with total embedded links.

However, we also notice some new effects and features. First, the
ImageToText ratio feature was in the original models, but was not
significant for most of the features. In this set of all features, the
set-level ImageToText feature has significant negative weight for all
measures of learning, suggesting that in general, while more images
might be helpful, there needs to be an overall balance between how
many images there are per unit of text. Second, the ratio of counts of
unknown keywords to all keywords is a positive predictor of better
learning outcomes at the document level. However, it shows the
opposite trend at the set level, either suggesting that in aggregate a
set of documents should not have stronger coverage of unknown



keywords (that need to be learned). The reasons for this require
further study.

In aggregate, this enhanced set of features has given us trained
models that do show expected improvements over the document-
features-only models and much of the same observations remain
valid in these newmodels aswell.While Syed andCollins-Thompson
[20] demonstrated strong improvements in learning efficiency (learn-
ing gains per unit of effort), the models introduced here may lead
to improvements in learning effectiveness (learning gains or final
knowledge state) or strong reductions in learning hindrance.

5 LONG-TERM RETENTION
We now describe a crowdsourced longitudinal study of long-term
retention, or robust learning, in which a subset of users who partic-
ipated in an initial learning and assessment study also completed a
delayed post-test nine months later, in order to study how much of
their original word learning they had retained over time.

5.1 Study design
Our experiment used the same platform, Crowdflower, as the study
by Syed and Collins-Thompson [20], as well as the original crowd
response dataset from that study. Our study design included three
pages of multiple-choice question tests for three topics out of the
ten total that were originally tested. Afterwards, participants com-
pleted a Likert-scale survey of the perceived importance of various
“learning factors” [1] on learning outcomes.

We limited this delayed post-reading assessment to only three
topics to prevent participants from having to take too many tests
and possibly having fatigue influence the results. We retained ex-
plicit quality control measures by adding gold standard test ques-
tions in each of the three tests that participants had to pass and
we randomized the order in which the assessments appeared. Un-
fortunately, while the Crowdflower platform allows us to see the
unique worker’s ids after an experiment has terminated, they do
not allow us to have this information during the experiment, nor
do they allow us to specifically request certain workers. As such,
we had to rely on chance that we would get repeat participants
and further on chance that some of those repeat participants would
have participated in one of the three selected topics. To maximize
the number of data points we could get, we chose the three topics
that had the lowest number of unique participants1.

In the original study [20], we gathered a total of 1200 data points
(judgments). In this study, we accumulated a total of 600 judgments
from the crowd, within which we found 36 unique repeat partici-
pants who had taken part in the original study (out of a maximum
of 116 from the set of three topics we chose) and there were 83
unique (participant, topic) tuples that matched the original dataset.
After filtering out those who did not answer all the gold standard
test questions correctly, we ended up with 81 unique tuples. We
performed the subsequent analysis on this dataset, matched against
the original dataset. For notation purposes, we consider “pre-test”
to be the pre-reading test results from the original study, “post-
test” to be the post-reading test results from the original study and
“delayed-test” to be the test results from the (later) crowdsourced
study described here.

1This increased the likelihood of getting more complete sets of (participant, topic)
tuples across all topics.

Difficulty Split Lower
Difficulty

Higher
Difficulty p-val

Robust Gains (Long-term) 1.025 1.000 0.867
Retained Gains 0.457 0.765 0.002
Retained Knowledge 2.395 2.296 0.733
Net Retained Knowledge 1.815 1.160 0.067
Learning Prior 2.753 2.469 0.093
Learning Gains (Short-term) 0.679 1.296 <.001

Table 4: Averages for the two splits for each robust measure
along with two short-term measures indicates better oppor-
tunity for gains in difficult terms.

Measure Web NP P p-val
Robust Gains 1.960 2.000 2.136 0.809
Retained Gains 1.280 1.059 1.409 0.856
Retained Knowledge 4.440 4.706 4.955 0.706
Net Retained Knowledge 2.520 2.941 3.545 0.439
Post-Test 6.360 6.471 6.364 0.966
Delayed-Test 5.560 6.118 6.091 0.764

Table 5: Averages of short- and long-term knowledge state
measures, broken down by retrieval models.

5.2 Robust learning outcomes
We consider the following measures of robust, or long-term, learn-
ing outcomes: (1) robust learning gains; (2) robust retention of
learning gains; (3) robust retention of post-test knowledge and (4)
robust change in post-test knowledge2. We define these measures
as follows:

(1) Robust Learning Gains. Computed as the sum of key-
words that a participant did not know in the pre-test and did
know in the delayed-test.

(2) Retained Gains. Computed as the sum of keywords a par-
ticipant learned (as defined by Learning Gains in Section 4)
and that they still knew in the delayed-test.

(3) Retained Knowledge. Computed as the sum of keywords
that a participant did get correct in the post-test and still got
correct in the delayed-test.

(4) Net Retained Knowledge. Computed as signed sum of
retentions in post-test knowledge (retention is positive if
participant got the keyword correct in post-test and again
in delayed-test; retention is negative if participant got the
keyword correct in post-test and wrong in delayed-test).

5.2.1 Variation by Keyword Difficulty. We first analyze how the
average robust measures compare when considering the averages
of the lowest-difficulty keywords only versus the averages of the
highest-difficulty keywords only. We split the set of ten keywords
into sets of five by a median split on their Age-of-Acquisition scores
[15]. We then compute each of the robust measures as well as the
pre-test scores on each of the sets and perform a Kruskal-Wallis
test to test for significance. The results are presented in Table 4.

2In this section, robust learning refers to participant learning that is retained over the
long term, not to be confused with the robust regression estimation method used in
our predictive models.



We find that of the four robust measures, Retained Gains and
Net Retained Knowledge showed significant differences in means:
(lower mean = 0.457, higher mean = 0.765, p=.002) and (lower mean
= 1.815, higher mean = 1.160, p=.067)3 respectively. This suggests
that in general, of the keywords participants were able to learn
and remember, more of these were likely to be difficult ones. On
the other hand, the opposite trend with Net Retained Knowledge
suggests that overall participants were also more likely to forget the
meanings of more difficult keywords. This shows an interesting
balance where participants who retained short-term learning gains
tended to retain acquired knowledge of more difficult terms better.
However, in cases where they forgot newly-learned terms, they
tended to lose acquired knowledge more with difficult terms as well.
In aggregate, there appears to be more forgetting than retaining
with difficult terms, suggesting that participants with better post-
test knowledge of easier termswill likely show a better net retention
of that knowledge even after a considerable time delay.

Another interesting finding is that the Robust Gains split was
unaffected by difficulty but the short-term learning gains were
strongly improved by higher difficulty (almost twice as much). We
also observe that the averages of these measures suggest a negative
relationship (i.e. lower short-term gains in easier terms led to better
long-term gains of easier terms and vice versa for difficult terms).
This may be explained by the fact that more difficult keywords are
likely those that are more unfamiliar and novel to the learner and
this novelty may facilitate better immediate recall but not long-term
retention. Conversely, learning unknown but easier keywords may
be less likely to cause learning gains as just a function of recall.

Related to the concept of desirable difficulties [3], it is possible
that the easier keywords that were unknown to the participant were
those that were difficult to learn but not so much that they inhibited
long-term retention. This is supported by the Net Retained Knowl-
edge results, where easier keywords showed substantially better
net change in delayed-test knowledge. These results suggests that
in personalizing document selection, it is important to incorporate
the difficulty of unknown words.

5.2.2 Variation by Retrieval algorithm. We now analyze whether
there were differences in robust learning outcomes depending on
the search model a user was assigned in the original study. There
were three possible models: (1) commercial search engine (Web); (2)
non-personalized retrieval (NP) and (3) personalized retrieval (P).
In our long-term dataset, each condition had roughly similar, but
small, sample sizes (n=25, n=34, n=22) respectively. The NP and P
algorithms exclusively considered a measure of difficulty-weighted
keyword density as the document selection criteria, with P also
incorporating information about the participants’ prior knowledge
and NP assuming zero prior knowledge for all participants. Details
on these algorithms are provided in the original study [20].

We found that omnibus Kruskal-Wallis tests between these three
models showed no significant differences for each of the four ro-
bust measures (Table 5), suggesting that in aggregate the choice of
retrieval model didn’t have significant impact on robust learning
outcomes. However, if we split these features again by difficulty, we
find some significant differences. In particular, both Robust Gains
and Retained Gains showed significant differences (p<.05) when
comparing onlyWeb and P on higher difficulty keywords (Figure 3).
In both cases, P outperformed Web (by 85% and 92% respectively),
3This significance was strengthened to p<.05 when normalizing by post-test knowledge
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Figure 2: Average changes in knowledge state (number of
keywords correct) over three periods of assessment for each
retrieval model.
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Figure 3: For higher-difficulty keywords, the Personalized
model (P) led to significantly better long-term retention of
learned keywords than the baseline Web model.

suggesting that the personalized algorithm introduced in [20] pro-
duced significantly better long-term improvements in knowledge
of more difficult terms, including better retention of short-term
gains on such terms.

We also observe some interesting variations in measures of final
knowledge state. In particular, observe in Table 5 that the post-test
final knowledge state showed very small differences across each of
the models, suggesting that regardless of the retrieval model, the
final knowledge state mostly ended up the same. However, in the
delayed-test knowledge state, while there was consistent evidence
of forgetting, this effect was distinctly stronger in Web, which
was the commercial search baseline (Figure 2). This suggests that
the other two models, proposed in [20] actually did demonstrate
not just evidence of short-term improvements but very possibly
evidence of long-term improvement as well.

Overall, we find that the personalized document retrieval model
(Model P) showed substantially better ability compared to a com-
mercialWeb searchmodel (ModelWeb) to help participants achieve
long-term understanding of more difficult keywords and retain
short-term learning gains of such keywords as well. We further
find that, though not significant, the commercial model produced
relatively stronger overall forgetting from post-test to delayed-test.



Feature Robust Gains Net Retained Knowledge Retained Gains
Lower Upper Corr Lower Upper Corr Lower Upper Corr

ImageCountManual 2.912e+01 2.919e+01 -.0875 3.265e+01 2.623e+01∗ -.1901· 2.811e+01 2.972e+01 -.0595
OutboundLinks 1.016e+03 9.165e+02 -.0699 7.299e+02 1.15e+03∗ .2777∗ 9.234e+02 9.765e+02 .1015
IncorrectSemanticRatio 3.138e+00 4.614e+00† .3930! 4.545e+00 3.531e+00· -.3292† 3.21e+00 4.409e+00∗ .4114!
KeywordDensity 4.044e-01 4.128e-01 .0923 4.455e-01 3.788e-01∗ -.1363 3.832e-01 4.23e-01 .0257
WeightedDensity 5.67e-02 5.801e-02 .0949 6.3e-02 5.28e-02∗ -.1506 5.375e-02 5.942e-02 .0262
IncorrectKeyRatio 3.214e+00 4.723e+00† .3937! 4.632e+00 3.633e+00· -.3154† 3.288e+00 4.513e+00∗ .4032!
KeyCount 5.541e+02 5.191e+02 -.1047 5.81e+02 4.941e+02· -.2731∗ 5.32e+02 5.347e+02 .0840
LogWeightedDensity 2.993e-02 3.065e-02 .0870 3.353e-02 2.766e-02† -.1983· 2.858e-02 3.128e-02 -.0079
ExpectedKnowledge 9.48e+00 9.276e+00∗ -.1915· 9.4e+00 9.329e+00 -.1952· 9.481e+00 9.298e+00· .0093
Set_KeyDensity 3.945e-02 4.104e-02 .0310 4.647e-02 3.525e-02† -.3245† 3.89e-02 4.116e-02 -.0631
Set_WeightDensity 5.456e-03 5.667e-03 .0286 6.494e-03 4.809e-03† -.3195† 5.409e-03 5.668e-03 -.0696
Set_IncorrectRatio 3.445e-01 5.035e-01∗ .3200† 5.169e-01 3.694e-01∗ -.4056! 3.687e-01 4.727e-01 .3151†
Set_IncorrectSemsRatio 3.375e-01 4.974e-01∗ .3324† 5.112e-01 3.623e-01∗ -.4074! 3.667e-01 4.639e-01 .3079†
PriorKnowledge 6.147e+00 4.553e+00! -.5270! 4.378e+00 5.932e+00! .4689! 5.964e+00 4.83e+00∗ -.4452!
Survey Features
Novelty 3.618e+00 4e+00∗ .0421 4.081e+00 3.636e+00∗ -.0797 3.571e+00 3.981e+00· .0494

Signif. codes: 0 ‘!’ 0.001 ‘†’ 0.01 ‘∗’ 0.05 ‘·’ 0.1 ‘ ’ 1
Table 6: For each dependent variable (DV), “Lower” and “Upper” columns contain mean values for different features when
considering either the subset of less than median of the DV or above median respectively. The third column “Corr” is the
Pearson’s correlation between each feature and each DV. Bold values are significant features at particular significance levels.

5.2.3 Analysis of median split. In this section, we consider how
each measure of robust learning differs, on average, with each of
the features from Table 1 when considering two subsets of data,
split on the median value of the corresponding robust measure. For
space reasons, we only included features that showed significant
differences or significant correlation. We tabulate the results in
Table 6 and include the averages, the overall correlation of the
feature with the measure, and the associated significance levels of
both the splits and the correlations.

The first observationwemake from these findings is that both Ro-
bust gains and Retained gains exclusively only showed significant
differences on measures pertaining to the user’s prior knowledge.
This suggests that while short-term learning gains may be influ-
enced by user-independent document features, neither long-term
gains nor retention of short-term gains seem to be affected similarly.
However, unlike what we saw in Section 4, here we note that both
the set-level and sum of document-level features show the same,
strong positive sign, suggesting that for robust learning gains and
retention of short-term gains, we should optimize strongly towards
documents with better coverage of unknown keywords relative to
known keywords. We also did find an intuitively strong correlation
between total keywords and total words (r=.835, n=283), suggesting
that the keyword density of unknown keywords will also likely be
a factor positively influencing robust learning outcomes.

Conversely, for Net Retained Knowledge we found a more in-
teresting picture. It was interesting to find that all measures of
unknown keyword ratios showed negative but relatively weaker
correlations. This makes sense when we consider that Net Retained
Knowledge measures not just the retention of previously unknown
words but also retention of words that were already known at the
time of the pre-test. As such, giving preference to more unknown
keywords gave less focus to the participants reinforcing keywords

that they may have known only partially at the time, possibly lead-
ing to this negative correlation.

We also find that the overall keyword and weighted keyword
density measures showed significant and negative correlations at
both the document-level and set-level. This suggests that, contrary
to what we observed in Section 4, robust retention of knowledge
is hurt by providing too many units of knowledge (instances of
keyword) in a small amount of text. We also find that Net Retained
Knowledge was improved by pages that had more embedded links
and those with a lower count of relevant images. This illustrates
a tradeoff: whereas these directional features had a negative rela-
tionship to short-term learning, they have a positive relationship
to long-term retention.

We observe that participants who reported higher ratings for
content novelty as an important feature for learning showed sig-
nificantly better Robust Gains and Retained Gains, suggesting that
those who believe more strongly in the importance of content nov-
elty also tend to achieve better Robust Gains and Retained Gains.

6 DISCUSSION
We now discuss implications and extensions of our work as it relates
to search support of both short- and long-term learning.

Short-term learning. We found that short-term measures of
vocabulary learning gains are typically improved by: (1) having a
lower set-level coverage of unknown keywords versus all keywords;
(2) having more contextually relevant images while not having too
many total images relative to total word count and (3) having a
higher set-level keyword density. We found that we could train
robust regression models for predicting learning gains reasonably
well with a set of document, user and document-set features.

Long-term learning. Due to the nature of the crowd platform
used in our experiments, we could not guarantee that we would get



return participants from the original study. However, it turned out
that from 600 original responses, we got 81 return participants, as
represented by unique (participant ID, topic) tuples that matched
against the original dataset. We found evidence that participants
who were provided documents chosen exclusively by personalized
difficulty-weighted keyword density in the original study showed
almost 92% higher Retained Gains of difficult keywords after a
nine-month delay compared to those who got documents from a
commercial Web search engine.

IR for Learning. These results extend the findings from the
original study [20] that optimizing purely for difficulty-weighted
density improves learning outcomes not only in the short term, but
also in the long term. This provides strong support for the utility of
efficient, robust document retrieval models to support personalized
vocabulary learning at scale.

We also consider some of the limitations of this study. In the
study that produced the initial dataset, the authors assumed that
a participant’s knowledge of a particular term may be modeled as
a binary variable (1 if answered correctly and 0 otherwise). More
refined and continuous measures of learning would likely give us
more accurate knowledge levels that could result in better fitted
models. In the robust learning study, we note that the results are
based on a relatively small sample size due to the nature of the
delayed post-test design. In future work we plan to consider other
possible platforms that may be more amenable to more refined
longitudinal analysis with a larger study population.

7 CONCLUSION
This study analyzed how features of documents and user knowledge
related to multiple types of learning outcomes, both short-term and
long-term, on a contextual vocabulary learning task. We also pre-
sented trained regression models for a variety of learning outcome
measures that allowed us to analyze the relative importance of
document and user features in predicting learning and retention.
We primarily focused on features that could be automatically and
quickly computed, to enable these models to be applied at scale in
a large variety of possible applications. We also provided a second
set of models, specifically trained on non-user features to accom-
modate realistic scenarios where a user’s prior knowledge of an
arbitrary topic is not known.

Beyond analyzing short-term learning outcomes, we were able to
analyze long-term learning outcomes for a subset of users from the
original study who completed a delayed post-test approximately
nine months after the initial post-test. Due to the smaller sample
size of this subset, we did not provide trained models but we did pro-
vide median split analysis of long-term learning outcomes against
each feature of the full feature set. Finally, we investigated how
different retrieval models were associated with changes to a user’s
vocabulary knowledge state in the immediate and delayed test
stages and found evidence that the personalized retrieval model in-
troduced in [20] provided documents that resulted in almost double
the long-term learning gains for higher-difficulty terms compared
to corresponding results for a commercial search baseline.

Acknowledgements.We thank the anonymous reviewers for
their comments. This work was supported in part by the Michi-
gan Institute for Data Science (MIDAS), and by the Institute of
Education Sciences, U.S. Department of Education, through Grant
R305A140647 to the University of Michigan. The opinions expressed
are those of the authors and do not represent views of the Institute
or the U.S. Department of Education.

REFERENCES
[1] Mustafa Abualsaud. 2017. Learning Factors and Determining Document-level

Satisfaction In Search-as-Learning. Master’s thesis. University of Waterloo.
[2] Peter Bailey, Liwei Chen, Scott Grosenick, Li Jiang, Yan Li, Paul Reinholdtsen,

Charles Salada, HaidongWang, and SandyWong. 2012. User task understanding: a
web search engine perspective. InNII ShonanMeeting onWhole-Session Evaluation
of Interactive Information Retrieval Systems, Kanagawa, Japan.

[3] Elizabeth Ligon Bjork, Jeri L Little, and Benjamin C Storm. 2014. Multiple-choice
testing as a desirable difficulty in the classroom. Journal of Applied Research in
Memory and Cognition 3, 3 (2014), 165–170.

[4] Bertram C Brookes. 1980. The foundations of information science Part I. Philo-
sophical aspects. Journal of Information Science 2, 3-4 (1980), 125–133.

[5] Kevyn Collins-Thompson and Jamie Callan. 2004. Information Retrieval for
Language Tutoring: An Overview of the REAP Project. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’04). ACM, New York, NY, USA, 544–545.

[6] Kevyn Collins-Thompson, Soo Young Rieh, Carl C. Haynes, and Rohail Syed. 2016.
Assessing Learning Outcomes in Web Search: A Comparison of Tasks and Query
Strategies. In Proceedings of the 2016 ACM on Conference on Human Information
Interaction and Retrieval (CHIIR ’16). ACM, New York, NY, USA, 163–172.

[7] Cathy De Rosa. 2006. College students’ perceptions of libraries and information
resources: A report to the OCLC membership. OCLC.

[8] Diana DeStefano and Jo-Anne LeFevre. 2007. Cognitive load in hypertext reading:
A review. Computers in Human Behavior 23, 3 (2007), 1616–1641.

[9] Geoffrey B Duggan and Stephen J Payne. 2008. Knowledge in the head and on the
web: Using topic expertise to aid search. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 39–48.

[10] Carsten Eickhoff, Jaime Teevan, Ryen White, and Susan Dumais. 2014. Lessons
from the Journey: A Query Log Analysis of Within-session Learning. In Proceed-
ings of the 7th ACM International Conference on Web Search and Data Mining
(WSDM ’14). ACM, New York, NY, USA, 223–232.

[11] Luanne Freund, Rick Kopak, and Heather O’Brien. 2016. The effects of textual
environment on reading comprehension: Implications for searching as learning.
Journal of Information Science 42, 1 (2016), 79–93.

[12] Bernard J Jansen, Danielle Booth, and Brian Smith. 2009. Using the taxonomy of
cognitive learning to model online searching. Information Processing & Manage-
ment 45, 6 (2009), 643–663.

[13] Terry Judd and Gregor Kennedy. 2010. A five-year study of on-campus Internet
use by undergraduate biomedical students. Computers & Education 55, 4 (2010),
1564–1571.

[14] Jin Young Kim, Kevyn Collins-Thompson, Paul N. Bennett, and Susan T. Dumais.
2012. Characterizing Web Content, User Interests, and Search Behavior by
Reading Level and Topic. In Proceedings of the Fifth ACM International Conference
on Web Search and Data Mining (WSDM ’12). ACM, New York, NY, USA, 213–222.

[15] Victor Kuperman, Hans Stadthagen-Gonzalez, and Marc Brysbaert. 2012. Age-
of-acquisition ratings for 30,000 English words. Behavior Research Methods 44, 4
(2012), 978–990.

[16] Richard E Mayer. 1997. Multimedia learning: Are we asking the right questions?
Educational Psychologist 32, 1 (1997), 1–19.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[18] Soo Young Rieh, Kevyn Collins-Thompson, Preben Hansen, and Hye-Jung Lee.
2016. Towards searching as a learning process: A review of current perspectives
and future directions. Journal of Information Science 42, 1 (2016), 19–34.

[19] Rohail Syed and Kevyn Collins-Thompson. 2017. Optimizing search results for
human learning goals. Information Retrieval Journal (2017), 1–18.

[20] Rohail Syed and Kevyn Collins-Thompson. 2017. Retrieval algorithms optimized
for human learning. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 555–564.

[21] Manisha Verma, Emine Yilmaz, and Nick Craswell. 2016. On Obtaining Effort
Based Judgements for Information Retrieval. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM, 277–286.

[22] Ryen W White, Susan T Dumais, and Jaime Teevan. 2009. Characterizing the
influence of domain expertise on web search behavior. In Proceedings of the Second
ACM International Conference on Web Search and Data Mining. ACM, 132–141.

[23] Barbara M Wildemuth. 2004. The effects of domain knowledge on search tac-
tic formulation. Journal of the American Society for Information Science and
Technology 55, 3 (2004), 246–258.

[24] Wan-ChingWu, Diane Kelly, Ashlee Edwards, and JaimeArguello. 2012. Grannies,
tanning beds, tattoos and NASCAR: Evaluation of search tasks with varying
levels of cognitive complexity. In Proceedings of the 4th Information Interaction in
Context Symposium. ACM, 254–257.

[25] Joerg Zumbach and Maryam Mohraz. 2008. Cognitive load in hypermedia read-
ing comprehension: Influence of text type and linearity. Computers in Human
Behavior 24, 3 (2008), 875–887.


	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	4 Analysis
	4.1 Choice of Features
	4.2 Measures of Learning Outcomes
	4.3 Prediction without User Data
	4.4 Predicting with User Data

	5 Long-term Retention
	5.1 Study design
	5.2 Robust learning outcomes

	6 Discussion
	7 Conclusion
	References

